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Abstract. This paper presents a surrogate-assisted optimisation approach to speed up the
substructure analysis in the preliminary design phase. The approach consists of replacing the
radiation-diffraction analysis in a frequency domain analysis model for floating wind turbines
with a data-driven surrogate model predicting the hydrodynamic coefficients for parameterised
substructure geometries. This procedure is compared with the reference approach of estimating
the hydrodynamic coefficients via radiation-diffraction analysis. A representative use case of
assessing the trade-off between minimising the capital cost and reducing the wave-induced
nacelle acceleration standard deviation for a semi-submersible substructure is presented. The
accuracy of the surrogate model is found to increase significantly up to training datasets
consisting of 400 designs and less noticeably afterwards. For a dataset consisting of 400 designs,
the mean error on the prediction of the hydrodynamic coefficients and the error at one standard
deviation from the mean are generally below 7% and 10%, respectively. For the same dataset
size, the mean error on the most probable maximum wave-induced pitch over a 3h storm period
is below 17%, while the error at one standard deviation from the mean is lower than 27%.
The same values for the most probable maximum nacelle acceleration are under 7% and 12%,
respectively. The surrogate model can capture the trade-off between the two objective functions,
and the optimal designs identified with the surrogate model generally follow the same trend as
those obtained with the reference model. However, relying on the surrogate model for performing
the analysis of the substructure introduces local minima in the objective function that cause a
discrepancy between the optimal designs identified with the surrogate model and those identified
with the reference model.

1. Introduction
Floating wind is a promising renewable energy source, enabling the deployment of wind farms
in regions where conventional bottom-fixed substructures are no longer economically appealing.
However, a significant reduction in the levelized cost of energy (LCoE) of floating wind systems
is necessary to make it competitive with other energy sources. The substructure capital cost
constitutes a significant part of the life cycle cost for a floating wind farm. This consideration has
driven a wide interest in adopting various optimisation algorithms to minimise the production
cost for different floating substructure concepts [1–3]. The floating unit analysis is carried out
in the frequency or time domain. Frequency domain approaches are usually adopted in the
preliminary design stage, as they allow quicker design space exploration than time domain
models. However, even adopting frequency domain analysis, the substructure optimisation



The Science of Making Torque from Wind (TORQUE 2024)
Journal of Physics: Conference Series 2767 (2024) 062032

IOP Publishing
doi:10.1088/1742-6596/2767/6/062032

2

becomes time-consuming when the floater first-order hydrodynamic coefficients are obtained
via radiation-diffraction analysis software. Therefore, researchers developed methods to avoid
running radiation-diffraction analysis within the substructure optimisation workflow, such as
interpolating pre-computed, gridded values [4], or decomposing complex substructures into the
constituting elements, followed by superposition of the hydrodynamic coefficients obtained for
these simpler geometries [5].

In this work, we present a novel surrogate-assisted optimisation approach for the design of
floating wind substructures. The ground truth is based on the open-source frequency domain
analysis model for floating wind units, RAFT [6], developed by NREL, where the radiation-
diffraction analysis is performed via the open-source software HAMS [7] for a given substructure
geometry. In our approach, the design optimisation problem is accelerated through the use
of state-of-the-art data-driven models, where the surrogate model replaces HAMS in RAFT’s
workflow. The hydrodynamic coefficients estimated by the surrogate model are then used
within RAFT to perform the substructure analysis in the frequency domain. This procedure is
compared with the ground truth for the representative use case of assessing the trade-off between
minimising the substructure capital cost and reducing the waves-induced nacelle acceleration.

2. Floater design parameters
The floating substructure selected for this study is a semi-submersible whose geometry is
reported in Figure 1. Three design variables are defined, which are represented in Figure 1 and
are reported in Table 1 together with the bounds. The semi-submersible’s remaining geometrical
and structural design parameters are defined as constants or fully determined by combinations
of other parameters and design variables and reported in Table 2. The ballast mass is composed
of 70% solid concrete, with density 2400kg/m3, and of 30% water, with density 1025kg/m3.

Figure 1: Semi-submersible geometry
and design variables. The figure is not
drawn to scale.

Table 1: Semi-submersible design variables.

Design variable Symbol Bounds

Radius of the outer columns Rout,se 2.7m-6.2m

Radial distance between
the central and outer
columns

Roff ,se 40m-70m

Draft between the still
water level, SWL, and
the keel

Tse 15m-45m

3. Machine learning framework
3.1. Surrogate model
Data-driven surrogate modelling is a widely used approach for estimating the underlying process
of a complex system using information derived solely from the observed input-output data pairs.
A database with n samples is defined as D = {(xi, yi)}ni=1, where x ∈ Rm are m-dimensional
input features of the data sample i and yi ∈ R is the corresponding response. The training
process consists of estimating an approximation of the underlying function that maps x → y by
minimising the expected value of a user-defined objective function L over the joint distribution
of the training subspace.

In this study, surrogate modelling is performed using XGBoost [10], a widely used and
very powerful machine learning approach that falls under the category of tree-based ensemble
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Table 2: Summary of semi-submersible geometrical and structural parameters.

Parameter Value Parameter Value

Freeboard height 10m
Thickness of the central and
outer columns

0.05m [1]

Depth of the taper
of the central column

Twice the 50 years significant
wave amplitude, ζs,50 = 5.4m

Central column taper angle 10.3° [8]

Connection height of the
cross braces with the upper
section of the central column

75% of freeboard height [9]
Connection depth of the
cross braces with the lower
section of the outer column

80% of
draft [9]

Diameter of cross braces,
upper and lower pontoons

As proposed by Karimi
et al., [1]

Cross braces and pontoons wall
thickness to radius ratio

0.022 [9]

methods. Ensembling works by estimating the best-fitting underlying functions f on randomly
picked subsets of the training dataset and input features and building the final predictive model
as a combination or ensemble of the learned functions. XGBoost uses an additive ensemble,
wherein the predicted value at any ith sample, ŷi is calculated from K additive functions - each
function fk being calculated by an individual regression tree in the space of regression trees, F .

ŷi =
K∑
k=1

fk(xi), fk ∈ F , (1)

A canonical representation of a binary regression tree can be seen in Figure 2. Each internal
node splits either into two leaves or another internal node and a leaf. The decision in an internal
node is based on a split s of one of the feature values. The decision rules defining the tree
structure are represented by q. The number of leaves is represented by T , and the weight or
score assigned to each leaf is denoted by w. Therefore, the space of trees can be defined by
F = f(x) = wq(x)(q : Rm → T,w ∈ RT ). For an input condition xi, a series of decisions are
made for each tree k, until a leaf is encountered. The value of fk(xi) is then equal to the score
of the leaf the decision sequence ends on. The final value of the prediction ŷi is calculated by
summing the scores using Equation (1) over all K trees.
The regularized objective function used to determine optimal tree functions is defined as:

Obj =
∑
i

l(ŷi, yi) +
∑

Ω(fk), (2)

where Ω(f) = γT + 0.5λ||w|| is a regularisation function that prevents overfitting by penalising
the number of leaves through the hyperparameter γ and by encouraging the weights to be small
through the hyperparameter λ. l is a user-defined differentiable, convex loss function. In this
study, l is the squared error between yi and ŷi.

The gradients of Equation (2) are calculated using Taylor series expansion. However, the
objective is a function of trees, and finding trees that minimise the objective along a suitable
gradient is one of the main problems of tree based ensemble approaches. XGBoost addresses the
issue using gradient boosting, which is an algorithm that combines weak learners (in the form of
individual decision trees) to form a single strong learner in a greedy and iterative fashion. In
summary, learning the optimal function fk can be divided essentially into two problems:
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• Finding the leaf values w: For a fixed tree structure, w can be analytically calculated based
on the first and second gradients of the objective function [10].

• Finding the tree structure q: XGBoost employs a greedy algorithm that iteratively adds
leaves to the tree. The tree is initialised by a single leaf, which is transformed into an internal
node with two leaves on the next iteration. For each feature, the split is linearly scanned,
and the best value is determined based on the value of the objective function. The new tree
structure is preserved if there is a net information gain. The process is repeated until the
user-defined value of maximum tree depth is reached. This step is the most computationally
expensive as it requires linear scanning of the values of all the features. Further, the tree is
pruned to simplify the tree structure.

In this project, we implement a multi-output tree structure, which uses vector leaves to preserve
the correlation between the output columns during modelling. This feature is extremely novel in
XGBoost and still subject to extensive research and testing. The reason for using a multi-output
tree structure will be made clear in the following section.

3.2. Hyperparameters
The hyperparameters chosen for this particular study are listed in Table 3.

s1

s2

s3

w2 w1 w3 w4

Figure 2: A canonical representation of a binary
decision tree showing the internal nodes with split
(s) and the leaves with weights (w).

Table 3: Hyperparameter values for the
XGBoost model.

Hyperparameter Value
Number of trees 150
Learning rate 0.1

Max. tree depth 10
Strategy Multi-output tree

Loss function Squared error

3.3. Training framework
The input features are the design variables listed in Section 2. Sobol sampling is used to
perform quasi-random uniform sampling within the boundaries of the design space. The use
case is simplified to only consider aligned wind and waves from a single direction, such that only
the surge, heave and pitch degrees of freedom of the floater are considered. Furthermore, only
the vertical columns of the semi-submersible are considered for radiation-diffraction analysis,
while strip-theory is used for the slender pontoons and cross-braces. The frequency-dependent
output parameters include:

• Hydrodynamic added mass: surge, A11, heave, A33, pitch, A55, coupling term surge-pitch
A51

• Wave radiation damping: surge, B11, heave, B33, pitch, B55, coupling term surge-pitch, B51

• Wave excitation forces in surge, heave, and pitch

For each output parameter, we train a separate XGBoost model. The output columns, for
instance, for the A11 element, are the values of A11 from fmin =0.004Hz to fmax =0.4Hz with
a step of 0.004Hz, resulting in 100 output columns per element.

The multi-output tree structure in XGBoost takes into account the correlation of the matrix
element values across the frequency range, thereby predicting smooth continuous functions of
frequency.
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4. Case study
The surrogate model is applied to the problem of assessing the trade-off between minimising the
capital cost of a semi-submersible substructure sized for the 5MW NREL reference wind turbine
and reducing the standard deviation of the nacelle acceleration from pitch and surge, which is
regarded as an indicator of floating wind turbine performance [1]. The optimisation problem is
formally stated as:
Minimise

wCse Cse + wσa,w σa,w (3)

Subject to
Tse ≥ Tse,min (4)

θst ≤ θst,max (5)

θtot,n ≤ θtot,max (6)

adyn,n ≤ adyn,max (7)

In the objective function, Cse is the adimensional capital cost of the substructure, expressed as:

Cse = [MsCs (1 +MCF ) +McCc]/Cmax (8)

Ms and Mc are the mass of the steel substructure and concrete in the ballast. Cs is the steel
price, 1000e/t, and Cc is the concrete cost, 86.6e/t. MCF is the Manufacturing Complexity
Factor accounting for the semi-submersible fabrication cost, which is computed as the average of
the values provided in the literature for steel semi-submersible with braces, 2.35 [11–13]. Cmax

is the cost of the semi-submersible when all the design variables are maximised.
σa,w is the adimensional weighted sum of the standard deviation of nacelle acceleration across

all the environmental conditions considered for the analysis, which are listed in Table 4. σa,w is
expressed as:

σa,w =

Nenv∑
n=1

pn σa,n/adyn,max (9)

pn is the probability of occurrence of the nth environmental conditions. σa,n is the standard
deviation of nacelle acceleration resulting from wave loads computed for the nth environmental
condition. adyn,max is the maximum allowable nacelle acceleration, 0.2g, with g gravitational
acceleration of 9.81 m/s2. wCse and wσa,w are two weights adopted to vary the relative

Table 4: Environmental conditions (EC) for substructure analysis. Wind speed Ws, significant
wave height, Hs, peak period Tp, and probability of occurrence p for Buchan Deep site [15].

EC Unit 1 2 3 4 5 6 7 8 9 10 11 12

Ws m/s 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0 23.0 25.0

Hs m 0.92 1.09 1.29 1.52 1.80 2.12 2.50 2.96 3.49 4.13 4.87 5.76

Tp s 6.7 6.9 7.1 7.40 7.7 8.0 8.4 8.80 9.2 9.7 10.3 11.0

p 7.6% 11.0% 13.8% 15.1% 14.7% 12.7% 9.4% 5.8% 3.7% 1.9% 0.9% 0.3%

importance of substructure capital cost and standard deviation of nacelle acceleration within
the objective function, with wCse + wσa,w = 1 and wCse , wσa,w ∈ [0, 1].
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Equations 4 to 7 illustrate the constraints adopted in the optimisation. In Equation (4),
Tse,min is the minimum allowed draft for the substructure, expressed as in [14]. The maximum
steady pitch at rated wind speed, θst, is enforced to be lower than the maximum allowed pitch,
θst,max, equal to 6o, as expressed in Equation (5). The maximum pitch angle attained by the
structure in each of the environmental conditions reported in Table 4, θtot,n = (θst,n + θdyn,n),
is enforced to be lower or equal than the maximum allowed pitch angle, θtot,max, 8

o. θst,n is the
steady pitch angle attained under the action of rotor thrust for environmental condition n, and
θdyn,n is the maximum dynamic pitch angle attained by the structure due to wave loads, which
is estimated as:

θdyn,n = σθ,n

√
2 ln

Tst

Tz
(10)

In this expression σθ,n is the standard deviation of the structure’s pitch response due to wave
loads, Tst is the storm length, 3h, and Tz is the average zero-crossing period. Finally, the wave-
induced maximum nacelle acceleration from pitch and surge for each environmental condition,
adyn,n, is constrained by its maximum allowable value, adyn,max. adyn,n is computed similarly to
θdyn,n:

adyn,n = σa,n

√
2 ln

Tst

Tz
, (11)

The optimisation workflow is set in OpenMDAO [16], adopting the Constrained Optimisation
by Linear Approximation (COBYLA) optimisation algorithm.

5. Results and discussion
5.1. Convergence
As the prediction accuracy of the data-driven models is driven by the number of training samples
and the distribution of the training population, we perform a comprehensive convergence study.
We test the performance of the surrogate model on different training sample designs ranging
from 100 to 1800. For each subset, we perform 20-fold cross-validation, where we test the model
on 100 test cases for each fold. The relative error described in Equation (12) is used as the
accuracy metric for this study.

εhyd =

∫ fmax

fmin
|yref − ŷ| df∫ fmax

fmin
|yref | df

(12)

where yref and ŷ are the hydrodynamic coefficients at each discrete frequency estimated through
HAMS and the surrogate models, respectively.
For each training design size, the mean error, ε̄hyd is defined as the average of the relative error
εhyd over the 20 random data folds, averaged over the 100 test designs:

ε̄hyd = µntests [µnseeds
[εhyd]] and σ̄hyd = µntests [σnseeds

[εhyd]] (13)

Similarly, the standard deviation of the error, σ̄hyd, is defined for each training dataset size
as the standard deviation of εhyd over the twenty random datasets, averaged over the 100
test cases. ε̄hyd and σ̄hyd at the variation of training dataset size are reported in Figure 3
for the hydrodynamic added mass. In the Figure, the squares denote ε̄hyd, while the error
bars denote σ̄hyd. ε̄hyd and σ̄hyd have also been computed for radiation damping and wave
excitation load magnitude. However results have not been portrayed graphically for brevity, as
they are well aligned to what can be observed for the hydrodynamic added mass. For all the
hydrodynamic quantities under consideration, both the mean error and standard deviation of
error decrease noticeably up to 400 training samples, whereas the decrease in both ε̄hyd and
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σ̄hyd is less noticeable for training datasets with more than 400 samples. The mean error is
below 7% for all the quantities predicted already for 400 samples training dataset, whereas it
slightly exceeds 10% at one standard deviation for the mean only for A55. Overall, the largest
ε̄hyd and σ̄hyd are found for the pitch-related quantities, while the lowest mean error and error
standard deviation are identified in the heave-related hydrodynamic coefficients. This is likely
related to the fact that heave-related hydrodynamic coefficients for the chosen semi-submersible
geometry vary mostly with Rout,se and are less affected by Roff ,se and Tse. Instead, pitch-related
quantities are significantly affected by all the semi-submersible design variables.

Figure 3: Convergence trend of a) A11, b) A33, c) A55, and d) A51.

For the application of the surrogate model to the optimisation use case, it is of interest to
evaluate the influence of the error in the prediction of the hydrodynamic coefficients at the
variation of the training dataset size on the optimisation constraints and objective function.
Therefore, a second convergence study is carried out, comparing the maximum response in
pitch θ̂dyn,n and maximum nacelle acceleration âdyn,n due to wave loads predicted by RAFT by
adopting the surrogate model, with the values that would be predicted by solving the diffraction-
radiation problem with HAMS, θdyn,n,ref and adyn,n,ref , for each environmental condition in
Table 4. The performance metrics for this comparison are the relative errors between these
quantities:

εθdyn,n
=

|θ̂dyn,n − θdyn,n,ref |
|θdyn,n,ref |

and εadyn,n
=

|âdyn,n − adyn,n,ref |
|adyn,n,ref |

(14)

Similarly to the previous case, the mean error on the maximum wave-induced response in pitch,
ε̄θdyn,n

, and the mean error on the maximum wave-induced nacelle acceleration, ε̄adyn,n
, are

defined for each training dataset size as the average of the relative error, respectively εθdyn,n
and

εadyn,n
, over the twenty random data folds, averaged over the 100 test designs:

ε̄θdyn,n
= µntests [µnseeds

[εθdyn,n
]] and ε̄adyn,n

= µntests [µnseeds
[εadyn,n

]] (15)

The standard deviations of the error on the maximum wave-induced pitch σ̄θdyn,n
and nacelle-

acceleration σ̄adyn,n
are computed as the standard deviation of, respectively εθdyn,n

and εadyn,n
,

over the twenty random datasets, averaged over the 100 test cases:

σ̄θdyn,n
= µntests [σnseeds

[εθdyn,n
]] and σ̄adyn,n

= µntests [σnseeds
[εadyn,n

]]. (16)

The mean error and error standard deviation for both maximum wave-induced pitch and nacelle
acceleration are illustrated in Figure 4. In the Figure, the bars illustrate the mean error, and the
error bars the error standard deviation. Overall, the mean error and error standard deviation
in the prediction of the structure response show a similar trend to what is observed for the
hydrodynamic coefficients. For both maximum pitch and maximum nacelle acceleration, the
mean error and error standard deviation decrease sharply up to the database size of 400 samples
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and less noticeably afterwards. adyn,n, which is derived from both the structure response in pitch
and surge, is usually predicted better than θdyn,n by the models in terms of both mean error
and error standard deviation. This observation is consistent with the findings on the prediction
of hydrodynamic coefficients, where the predicted pitch-related quantities showed the highest
mean error and error standard deviation when compared to the ground truth quantities. ε̄θdyn,n

is below 17% for all the environmental conditions for the training dataset size of 400 samples,
and below 27% at one σ̄θdyn,n

from the mean. For the nacelle acceleration, ε̄adyn,n
and the error

at one standard deviation from the mean are already below 7% and 12%, respectively.

Figure 4: Mean error and error standard deviation on maximum wave-induced pitch response
θdyn,n and nacelle acceleration adyn,n prediction with training databases of a) 100 samples, b)
400 samples, c) 800 samples, and d) 1400 samples for all the environmental conditions in Table 4.

5.2. Use case
The optimisation of the semi-submersible is performed for eight different combinations of wCse

and wσa,w . For each combination of wCse and wσa,w , four different training dataset sizes are
evaluated. For each dataset size, twenty optimisations are performed, corresponding to an
equivalent number of surrogate models. The optimal designs obtained with the surrogate models
are fed again into the reference model to evaluate the ground truth value of the weighted standard
deviation of nacelle acceleration. For each combination of wCse and wσa,w , and each dataset size,
the floating substructure capital cost, weighted nacelle acceleration standard deviation, and
design features obtained as a result of the optimisation over the twenty models are averaged
and compared with the same quantities resulting from carrying out the optimisation with
substructure analysis performed with RAFT and HAMS.

Figure 5 a) shows the trade-off between minimising the substructure capital cost and reducing
the weighted nacelle acceleration standard deviation, while Figure 5 b) to d) compare the average
features of the optimal designs identified with the surrogate model with the ones obtained with
the reference model. Only the minimum draft constraint, Equation (4), and the maximum
steady pitch constraint, Equation (5), are active for the design that minimises the capital cost
of the semi-submersible. This results in the designs obtained with the surrogate models matching
exactly the design obtained by performing the optimisation with the reference model. When
increasing the weight of the waves-induced nacelle acceleration in the objective function, the
designs obtained performing the optimisation with substructure analysis relying on the reference
model show a decrease in Rout,se, and a simultaneous increase in Roff ,se . Reducing the outer
column diameter reduces the wave loading on the structure, while the simultaneous increase
of the offset between the columns maintains the necessary hydrostatic stiffness to fulfil the
maximum steady pitch constraint. The trade-off between the two objective functions is well
captured when performing the optimisations with the surrogate model. The design features
obtained with the surrogate models at the variation of wCse and wσa,w follow a similar trend as
the results predicted with the reference model, although the increase in the semi-submersible
draft is largely over-predicted by the surrogate models relying on only 100 training samples for
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Figure 5: a) Trade-off between minimising the substructure capital cost and reducing the
weighted sum of the standard deviation of nacelle acceleration and b), c), and d), average
characteristics of the optimal designs identified by RAFT with HAMS (Reference) and RAFT
with the surrogate model.

wσa,w ≥ 0.9. However, evaluating the floating substructure designs with the surrogate model
introduces local minima in the objective function, which are not present when evaluating the
floating substructure designs with the reference model. These local minima are the result of the
variation of the error in the prediction of adyn,n across the design space and the cause of the
difference between the optimal designs identified by the reference model and those identified by
the surrogate models.

6. Conclusion
In this work, we introduced a novel surrogate-assisted optimisation approach for the design
of floating wind substructures. This method consists of replacing the radiation-diffraction
solver necessary to estimate the first order hydrodynamic coefficients for a certain substructure
geometry with a data-driven surrogate model, relying on XGBoost tree-based ensemble
algorithm. We applied this method to the use case of assessing the trade-off between minimising
the capital cost and reducing the wave-induced nacelle acceleration for a semi-submersible
supporting a floating wind turbine.

For the semi-submersible geometry considered in this study, the accuracy of the surrogate
model in the prediction of the hydrodynamic coefficients increased significantly up to training
datasets consisting of 400 designs, while a slighter improvement in accuracy was achieved for
larger training datasets. The same trend was observed for the accuracy in predicting the most
probable maximum waves-induced pitch response and maximum nacelle acceleration over a 3h
storm period. For training dataset consisting of 400 designs, all the hydrodynamic quantities
were predicted with a mean error below 7%, whereas the error at one standard deviation from
the mean was slightly above 10% only for A55. Overall, pitch-related quantities showed the
highest mean error and error standard deviations, while heave-related quantities showed the
lowest errors. For the same training dataset size, a lower-than-17% mean error in maximum
waves-induced pitch response across all the environmental conditions considered in this study
was found when comparing the prediction obtained with the surrogate model with the prediction
achieved with the reference model, whereas the error at one standard deviation from the mean
was lower than 27%. Concurrently, the mean error in maximum nacelle acceleration in waves
was below 7% and the error at one standard deviation from the mean was below 12%.

The results of the optimisation carried out varying the relative weight between capital cost
and nacelle acceleration standard deviation showed that the surrogate model captured the trade-
off between minimising the floating substructure capital cost and reducing the weighted nacelle
acceleration standard deviation and that the designs obtained when performing the optimisation
with the surrogate model generally follow the same trend as the optimal designs obtained with
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the reference model. However, performing the analysis of the substructure designs with the
surrogate model introduced local minima in the objective function that were not present when
the analysis was performed with the reference model. These local minima relate to the error in
the prediction of nacelle acceleration introduced by analysing the substructure with the surrogate
model and caused the discrepancies between the optimal designs individuated by the surrogate
model and those achieved by analysing the substructure with the reference model.

The primary reason for developing a data-driven model only for the radiation-diffraction
solver instead of the complete frequency domain analysis is to limit the features to floater design
parameters. However, this approach does not allow for controlling the error in the response
of the floating wind turbine. A data-driven model that directly predicts the response of the
floating wind turbine would permit including the error in the loss function during the training
phase. This approach will be the focus of future research. The computational cost reduction
achieved by using the surrogate model is use case and computational set-up dependent and will
generally depend on the number of substructure geometries where radiation-diffraction analysis
is avoided. Overall, the surrogate modelling technique presented in this paper would be suited
for the preliminary design phase, where it is of interest to identify promising regions of the
design space and understand trades and drivers for optimisation of different key performance
indicators. Global search methods should be adopted when adopting this surrogate modelling
technique to optimisation use cases.
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