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Abstract. Floating offshore wind turbines can extract energy from deep offshore locations,
typically unfit for fixed bottom designs. The complex interaction between the structural
behavior of the floating offshore wind turbine and the stochastic site conditions, however,
is an active area of research. Characterizing the relationship between the environmental
conditions and loads may help design reduced-order models, surrogate models, and physics-
based engineering models for floating wind turbines. This study uses data from the TetraSpar
prototype equipped with a 3.6 MW Siemens Gamesa wind turbine. One-to-one simulations
performed using an aero-servo-hydro-elastic software are included for comparison. Various
tools, including linear correlation, mutual information, feature ordering using conditional
independence, and sensitivity analysis using a data-driven variogram fit, are used for the
assessment. This study is also helpful in validating the engineering model for future global
sensitivity analysis using elementary effects or Sobol indices that require a rigid sampling of
features and can, therefore, only be calculated with simulation tools. We find a good agreement
between the experiments and simulations. The 10-min. damage equivalent loads on the tower
show a correlation, particularly with the wind speed statistics and the significant wave height.

1. Introduction
Floating offshore wind turbines offer a vast potential to extract energy from deep offshore
regions with stronger and more consistent wind resources. However, the interaction between
the floating system and the stochastic site conditions, which ultimately results in uncertainty in
the structural response, still needs to be better understood. Sensitivity and correlation analyses
are valuable for designing structures with smaller safety factors and for feature selection for
developing engineering, reduced order, and data-driven surrogate models. Several studies in
the past have focused on addressing the sensitivity of wind turbine loads to environmental
conditions [1, 2, 3, 4, 5]. The combined effect of environmental and structural parameters has
been analyzed on fixed-bottom [6, 7] and floating wind turbines with semi-submersible platforms
[8, 9]. However, in the case of floating wind turbines, the response is also a function of the
substructure type [10]. This means that the sensitivity analysis for semi-submersibles may not
be completely relevant for the spar.

This study relies on the measurements obtained from the TetraSpar demonstrator [11, 12],
equipped with a 3.6MW Siemens Gamesa Renewable Energy wind turbine. An image of the
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platform with the wind turbine is shown in Figure 1. The TetraSpar prototype has been installed
at the Marine Energy Test Centre, 10 km off Karmøy in Norway, at a depth of 200m and has
been operating since July 2021 [12]. The objective of this paper is to perform a Global Sensitivity
Analysis (GSA) and a correlation study between 10-minute statistics of environmental conditions
and the corresponding 10-min. damage equivalent loads (DELs), also referred to as short-term
DELs (STDEL) or 10-min. DEL, obtained from the measurement campaign.

Figure 1: Image of the TetraSpar full-scale demonstrator moored at the test site off the coast
of Norway. [12]

GSA on wind turbines is generally performed using either a derivative-based approach, such
as elementary effects, or a variance-based approach, such as Sobol’s indices. Both approaches
suffer from a few significant issues [13]. First, they follow a rigid sampling strategy. Second, they
require a function to evaluate the input-output relationship - in this case, a relatively expensive
engineering tool such as OpenFAST. Therefore, they cannot be used on randomly sampled field
measurement data. Additionally, the analysis implicitly reflects any deficiencies the numerical
model may have. Performing GSA using either of the two approaches on field measurement data
necessitates fitting a surrogate model to the observations, followed by sampling the responses to
perform a GSA using traditional methods.

We perform GSA with the recently introduced data-driven variogram analysis of response
surfaces (D-VARS) [13] to address these issues. For the correlation study, we evaluate the
conditional dependence coefficient (CODEC) and a corresponding variable selection algorithm
called Feature Ordering by Conditional Independence (FOCI)[14]. Other standard correlation
metrics, including mutual information (MI) and Pearson’s correlation coefficient (PC), are also
evaluated.

An extension of this study would be to use traditional GSA techniques like elementary effects
or Sobol’s sensitivity indices that require a uniform and organized sampling of parameters.
Simulation tools play an essential role in performing GSA studies, as this is not possible with
site measurements. In order to validate the extent to which we can rely on the state-of-the-
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art engineering tools used in the industry to perform such analyses, one-to-one simulations are
carried out using the in-house multi-physics tool, BHawC [15, 16] coupled with OrcaFlex. The
correlation studies are repeated on measured and simulated data; the comparison is presented
in this paper.

The details of load acquisition from the measurement campaign and the pre-processing
performed before running the analysis are presented in Section 2. The simulation setup is
presented in Section 3. A brief note on the statistical methods is presented in Section 4 followed
by results and discussion in Section 5.

2. Parameters and data pre-processing
2.1. Parameters
The Tetraspar prototype is heavily instrumented, with the sensors on board providing data to
a central data acquisition system, which stores data at a frequency of 25Hz. The turbulence
intensity, wind speed at hub height, and shear profile are processed from the nacelle-based
LiDAR measurements. The free-stream wind conditions are measured 364m upstream of the
rotor plane. The onboard wave radar measures the wave elevation and direction, which are then
processed to obtain values of significant wave height and peak spectral frequency. The wave radar
is located at the base of the tower, targeting the area directly below the wind turbine. It is,
therefore, subject to additional disturbances due to the surrounding floating structure compared
to the open ocean. Ocean current characteristics in the form of current speed and direction are
not measured directly at the location and are obtained from the Norwegian Meteorological
Institute’s reanalysis data. Air density is derived from temperature measurements.

The quantities of interest (QoI) are the loads measured at the blade root, tower top, and
tower bottom. The high-frequency sensor measurements are processed to obtain 10-minute load
statistics. The input parameters considered for this study are listed in Table 1. The periods of
normal operation are selected and processed to remove any faulty sensor measurements between
3 March 2022 and 31 October 2022.

Variable Source
Turbulence intensity, hub height mean wind
speed, shear profile power law exponent

Nacelle-based LiDAR

Air density Derived from temperature
Platform pitch angle Inclinometer (tower top)
Significant wave height, wave elevation peak
frequency, wave direction

Wave Radar

Current speed, Current direction Meteorologisk Institut (met.no)

Table 1: List of variables characterizing the environmental conditions

2.2. Data processing
The filtered 10-minute measurements and simulation output are further processed to render
them suitable for our statistical analysis tools.

• Missing values: For any missing measurement channel in the dataset, all measurements
from that timestamp are discarded.

• Acquisition frequency: Current speed, current direction, and density are recorded every
hour, and therefore, their values repeat over a period of time until the next acquisition
point. This does not introduce an issue with MI and PC. However, the repeated values can
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introduce an artificial bias in the data for CODEC, FOCI, and D-VARS. Therefore, the
CODEC, FOCI, and D-VARS analysis is performed on a much smaller dataset where the
repeating values of density, current speed, and current direction are discarded.

• Outlier detection: CODEC, FOCI, and D-VARS analysis has an additional outlier
detection step. We use a simple metric called the z-score to mark any sample more than
2.5 standard deviations away from the mean as an outlier. For the ith data sample with
value xi, the z-score value is defined as

zi =
(xi −X.mean)

X.std
(1)

where X is a vector of the parameter values.

• Normalization: Both simulation and measurement channels are normalized between the
min and max values of the measurements (Xmeas) per channel,

xinorm =
xi −Xmeas.min

Xmeas.max−Xmeas.min
(2)

After filtering and processing the data, we are left with roughly 9489 10-min. samples to
perform MI and PC. The number of samples was further reduced to 1145 for CODEC, FOCI,
and D-VARS analysis. With the limited amount of noisy data to perform the analysis, we expect
statistical uncertainty in the estimates.

2.3. STDEL calculation
Rainflow counting [17] algorithm is used to obtain the load ranges Si and the number of load
cycles ni needed to calculate the STDEL as,

STDEL :=

(
niS

m
i

nref

)1/m

, (3)

where nref is 600 for 1Hz DELs over 10 minutes. m is the Wöhler coefficient with values 3.5
for the tower, 10 for blade flapwise, and 8 for blade edgewise moments.

3. Simulation setup
BHawC, or Bonus Horizontal Axis Wind Turbine Simulation Code, is an in-house aero-servo-
elastic solver developed by Siemens Gamesa Renewable Energy. It is dynamically coupled with
the hydrodynamic solver, OrcaFlex, which models the platform hydrodynamic loads and mooring
loads and response. At each coupling step, BHawC calculates the aero-servo-elastic response,
providing OrcaFlex with the displacement, velocity, and acceleration of the interface between the
tower and foundation. With these inputs, OrcaFlex calculates the hydro-elastic response of the
floater-mooring system at the interface location. The total simulation duration per simulation
is set to 600 s, to match the 10-min. statistics from the prototype measurements.

The Mann model [18] is used to generate spatially coherent turbulent flow structures in the
inflow. It uses a frozen-Taylor assumption to represent a wind time series as a spatial wind
field. The turbulence box is scaled based on the wind speed, turbulence intensity, and the shear
profile values which are obtained from the measurement campaign. The statistical variation in
the turbulent field is reproduced by using different random seeds (ranging from 1 to 45) for the
simulations.

The double-peaked Torsethaugen wave spectrum [19] is chosen to generate stochastic waves
in OrcaFlex. It represents sea states that include both swell and wind-generated waves. An
interpolated current profile is specified, based on the reanalysis data from the Norwegian
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Meteorological Institute. The suspended keel and tubular structures are modeled as stacked
spar-buoy cylindrical elements under the category of 6-D buoys in OrcaFlex. The mooring line
dynamics are solved using a finite element model by discretizing the line into a series of lumped
mass nodes connected by straight massless segments with axial and torsional spring dampers at
each end.

4. Methodology
The measured data is of the form D = (xi, yi), i = 1...n where xi ∈ Rm is the m-dimensional
input vector of the sample i and yi ∈ R is the corresponding response. It can be assumed that
the data samples are realizations of random variables, input X = (Xj)1≤j≤m and response Y .

4.1. Pearson’s correlation coefficient
Pearson’s correlation (PC) is a simple measure of linear correlation between two random variables
X and Y . The values of PC is bound by −1 and 1. 0 denotes a lack of linear correlation, whereas
the negative and positive values are interpreted as inverse and direct linear relationship between
the variables, respectively. Mathematically, it is expressed as,

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4)

4.2. Mutual Information
MI is defined as a measure of the amount of information shared between two random variables.
In other words, it measures the reduction in uncertainty of a random variable Y , given the
knowledge of another random variable X. The value of mutual information ranges from 0
(complete independence) to a positive maximum (perfect correlation). The value itself is a
function of the units of measurement of the quantities in question. In practice, it is symmetric,
capable of measuring non-linear correlations and is not sensitive to outliers, making it a robust
metric. For discrete variables X and Y with a joint probability distribution PXY (x, y), and
marginal distributions PX(x), PY (y), it is defined as [20],

I(X;Y ) =
∑
y∈Y

∑
x∈X

log

(
PX,Y (x, y)

PX(x)PY (y)

)
(5)

4.3. Conditional dependence coefficient and feature ordering by conditional independence
CODEC is defined as the measure of conditional dependence of Y on a set of random variables
A{1...q} given a set of other random variables B{1...p} [14], where p and q ≥ 0. It is a fully
non-parametric approach that can be used with randomly sampled, unstructured data, allowing
us to use it on measurements directly. Two major advantages of CODEC include a fixed range
from 0 to 1, and accounting for the conditional dependence between the various features. The
coefficient is defined in Equation (6).

T (Y,A | B) =

∫
E (Var (P(Y ≥ t | A,B) | B))dµ(t)∫

E (Var (1{Y≥t} | B))dµ(t)
(6)

The value of T is estimated in the form of Tn for n discrete samples [14] as the exact value is
not tractable. µ is the law of the random variable Y and 1{Y ≥ t} is the indicator of the event
Y greater than or equal to a threshold t.

On our data, FOCI uses CODEC for feature ordering as follows. First, the feature that
maximizes Tn(Y | Xj) is chosen from j = j1...jm, say, Xj1 . Then, the feature maximizing
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Tn(Y,Xj | Xj1) is chosen from the remaining features, j /∈ j1, say Xj2 . The feature maximizing
Tn(Y,Xj | Xj1 , Xj2) is chosen from the remaining features, j /∈ j1, j2. This process is repeated k

times until the value of Tn ≤ 0. The subset of important features, thus, reduces to Ŝ = j1...jk.

4.4. Data-driven variogram analysis of response surfaces
Variogram Analysis of Response Surfaces, VARS, is based on the idea that the variance in the
response surface between any two points, x1 and x2, is a function of the distance h between the
points in the m-dimensional input space. For N(h) sample pairs, the semi-variogram γ can be
approximated as:

γ(h) =
1

2N(h)

N(h)∑
l=1

(y(xl)− y(xl + h))2 (7)

Sheikholeslami et al. [13] derive a form of the variogram based on the variance σ2 and spatial
covariance C(h) of the response function, γ(h) = σ2 − C(h).

For unstructured samples, Sheikholeslami et al. [13] introduce data-driven VARS, or D-
VARS, that uses zero-mean Gaussian processes to obtain the covariances. In this study, we use
a linear covariance function.

5. Results
The result section is divided into three parts. First, we compare the simulation predictions
with measurements obtained from the prototype using scatter plots, MI, and PC. The scatter
plots provide a qualitative comparison of the simulated and measured QoIs as a function of each
of the environmental features. MI and PC provide a quantitative assessment of the degree of
correlation between the fatigue loads as a function of the environmental conditions. Note that
the variations in the response are a cumulative effect of changes in all the parameters. However,
the correlation metrics disregard any conditional dependence between the input variables.

In the second part, we look at the results obtained using FOCI, which takes into account the
conditional dependence between the input variables while calculating the score. The conditional
dependence coefficient is helpful in determining a subset of interesting features that most explain
the behavior of the QoI.

Finally, we assess the predictions obtained for the GSA using D-VARS. The ratios reflect the
degree of variation in the response for a unit variation in the inputs.

5.1. Data visualization and standard correlation metrics
Figure 2 and Figure 3 show the 10-min. DEL plotted against the 10-minute statistics of the
inflow quantities. Firstly, the simulations and measurements have a good qualitative agreement,
and the statistical trends are similar. Regarding absolute values, the blade root edgewise DELs
and tower DELs in simulations show a larger variance than the measurements. Subsequent
investigation revealed a limitation in the structural modeling of the suspension lines connecting
the upper floater section to the keel. In simulations, these suspension lines do not remain as
taut as the prototype, primarily due to smaller structural damping. In certain cases, it results
in artificially increased fatigue, especially in the non-damped side-side tower moment and the
edgewise blade loads.

Figure 5 and Figure 6 show the MI and PC scores in measurements and BHawC simulations.
For both tower bottom and top fatigue loads, the significant wave height and the mean and
standard deviation of wind speed reflect a strong correlation. Meanwhile, the blade loads are
mainly correlated to the wind statistics, especially the flapwise fatigue, which is turbulence-
driven. We looked further into how flapwise fatigue correlates with significant wave height.
Figure 4a shows the standard deviation of the measured platform pitch angle (measured at the
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(a) Tower bottom resultant 10-min. DEL

(b) Tower top resultant 10-min. DEL

Figure 2: Scatter plot of the 10-min. DELs calculated on the tower as a function of the
environmental conditions.

tower top) plotted against the significant wave height. The color of each point corresponds to the
mean wind speed, and its size reflects the wind speed standard deviation. Then, in Figure 4b, we
show the blade root flapwise 10-min. DEL against platform pitch standard deviation. Here, point
color represents significant wave height, and size reflects the wind speed standard deviation. We
see in Figure 4b that higher blade root flapwise fatigue tends to occur when the significant wave
height is high, and the standard deviation of hub height wind speed is large. The connection
between significant wave height and flapwise fatigue might be influenced by the relationship
between the platform pitch standard deviation and significant wave height, and how platform
pitch standard deviation relates to flapwise fatigue. This is to show that it is difficult to account
for the conditional dependence between all variables and trace a unique cause of fatigue damage.
We also note that the tower top loads have a much stronger correlation in the measurement data
with the significant wave height compared to BHawC.
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(a) Blade edgewise 10-min. DEL

(b) Blade flapwise 10-min. DEL

Figure 3: Scatter plot of the 10-min. DELs calculated on the blade root as a function of the
environmental conditions.

5.2. Feature ordering by conditional independence
Feature ordering is an essential pre-processing step in developing data-driven models. Table 2
shows the features chosen by this algorithm to contain the most information about the QoI.
The values of the conditional dependence coefficient calculated with all the features versus those
calculated with just the important features are also shown in the table. Note that the values of
the coefficient range from 0 to 1; therefore, the closer the values to 1, the higher the chances of
being able to predict the QoI using the information from the values of the important parameters.
The most relevant features align with the trends seen in Section 5.1. Additionally, based on the
values of the conditional dependence coefficient, C, we see that including non-important features
in the dataset can lead to a reduction of the quality of information contained in it. Comparing
the C(Y |X(FOCI)) values for this sample set, we would expect to have more success in training
a data-driven model for predicting the blade root edgewise fatigue than the tower top resultant
fatigue, as the latter is largely unexplained by the 10 environmental variables we have considered
in this study. It must also be mentioned that FOCI uses the k-nearest neighbor algorithm for
ranking the distances between the samples in practice. If two features are very close in relevance,
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(a) The standard deviation of the platform pitch
angle vs. the sig. wave height, shaded by the
mean wind speed

(b) Blade root flapwise 10-min. DEL vs. the
standard deviation of the platform pitch angle,
shaded by the sig. wave height

Figure 4: Scatter plots from the TetraSpar measurements, showing the influence of significant
wave height on pitch and blade root flapwise moment 10-min. DEL. In all cases, the size of the
symbols is based on the standard deviation of the wind speed.
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Figure 5: MI and PC on tower loads for measurements and BHawC simulations

they may interchange their order of importance with changes in the dataset.

5.3. Variogram analysis
D-VARS fits an anisotropic variogram structure to the underlying response surface for a given
dataset. The ratios shown in Figure 7 reflect the degree of sensitivity of the response to any
change in the inputs, as we are utilizing the gradients of the response surface. The highest ratios
for factor sensitivity follow a similar trend to the previous analyses, with the tower fatigue being
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Figure 6: MI and PC on blade root loads for measurements and BHawC simulations

Feature importance Tower bottom
res. STDEL

Tower top res.
STDEL

Blade root
edgewise
STDEL

Blade root flap-
wise STDEL

1 Wind speed Sig. wave ht. Wind speed Wind speed
2 Sig. wave ht. Wind speed Density Wind speed std.
3 Wind speed std. Wind speed std. Sig. wave ht. Density
4 - Wave direction - -

C(Y |X) 0.63 0.5 0.69 0.61
C(Y |X(FOCI)) 0.7 0.57 0.81 0.7

Table 2: Feature ordering using FOCI on the tetraspar measurement dataset

sensitive to the significant wave height and wind speed statistics. The current speed and direction
are not shown to impact the tower and blade fatigue for this dataset significantly.

We found the method susceptible to statistical uncertainty based on the number of samples.
It also did not seem robust to data outliers, and we noted that the presence of noise resulted in
very flat response surfaces. Increasing the sample set in the future might reduce the uncertainty.

6. Conclusion
This study focused on the correlation and sensitivity analysis of the TetraSpar floating prototype
equipped with a 3.6 MW Siemens Gamesa wind turbine. The goal was to understand the
relationship between environmental conditions and the fatigue loads on the tower and blades,
to aid in the development of data-driven reduced-order models and physics-based engineering
models. Additionally, one-to-one simulations were performed using an aero-servo-hydro-elastic
software (BHawC) for comparison with measured data.
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(a) Tower bottom resultant 10-min. DEL
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(b) Tower top resultant 10-min. DEL

Wind
speed
mean

[-]

Wind
speed

std
[-]

Wind
direction

[-]

Power
law

exponent
[-]

Density
[-]

Sig.
wave
height

[-]

Peak
spectral
period

[-]

Wave
direction

[-]

Current
speed

[-]

Current
direction

[-]

Input

0.00

0.05

0.10

0.15

0.20

Ra
tio

s o
f f

ac
to

r s
en

sit
iv

ity
 [-

]

Edgewise blade root moment STDEL [-]

(c) Blade root edgewise 10-min. DEL
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(d) Blade root flapwise 10-min. DEL

Figure 7: D-VARS performed on the 10-min. DEL at the tower and blade root

The scatter plots, mutual information, and Pearson’s correlation coefficient revealed a good
qualitative and quantitative agreement between the simulations and measurements. Significant
wave height and wind speed mean and standard deviation were identified as the most important
variables correlated to tower fatigue. Significant wave height was also found to give a correlation
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with the blade root flapwise 10-min. DEL. Whereas, the edgewise fatigue loads were mainly
driven by the mean wind speed, which in turn links to the rotor rpm and, therefore, to the cyclic
gravitational loading. The mean current speed, profile and direction did not reveal any significant
influence on the wind turbine fatigue. Further analysis could involve investigations on the
mooring line tension drivers, which are expected to be current driven. Wind-wave misalignment
would also be included as an additional parameter.

The FOCI algorithm provided valuable insights into feature importance, aiding in the
identification of key parameters that significantly influence the response. The D-VARS analysis,
despite showing promising results, highlighted some challenges related to statistical uncertainty
and sensitivity to noise.
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